The Changing Notation of Maxwell’s Equations

John Arthur, FREng, FRSE and David Forfar, MA, FFA, FIMA, Trustees of the James Clerk Maxwell Foundation

When, in his 1865 paper ‘A Dynamical Theory of the Electromagnetic Field’, Maxwell set out the equations now known as Maxwell’s Equations, he used a notation in which the x, y and z components of each vector were assigned separate letters. For example,

<table>
<thead>
<tr>
<th>Vector</th>
<th>x-component</th>
<th>y-component</th>
<th>z-component</th>
<th>Modern Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Field</td>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>E</td>
</tr>
<tr>
<td>Magnetic Field</td>
<td>α</td>
<td>β</td>
<td>γ</td>
<td>H</td>
</tr>
<tr>
<td>Displacement</td>
<td>f</td>
<td>g</td>
<td>h</td>
<td>D</td>
</tr>
<tr>
<td>Free Current</td>
<td>p</td>
<td>q</td>
<td>r</td>
<td>J</td>
</tr>
</tbody>
</table>

Every vector equation was then written out as three simultaneous equations, one for each component. Noting that Maxwell wrote \(d \) where we would now write \(\hat{d} \), the modern equation \(\nabla \times \mathbf{H} = \mathbf{J} + \partial \mathbf{D}/\partial t \) can be traced back to two equations that Maxwell labelled in this paper as (A) and (C). Taken together they give

\[
\begin{align*}
\frac{d\gamma}{dy} - \frac{d\beta}{dz} &= 4\pi(p + df/dt) \\
\frac{d\alpha}{dz} - \frac{d\gamma}{dx} &= 4\pi(q + dg/dt) \\
\frac{d\beta}{dx} - \frac{d\alpha}{dy} &= 4\pi(r + dh/dt)
\end{align*}
\]

The interest in these three partial differential equations, however, is that they represent one of Maxwell’s greatest innovations. He realized that when the bound charges within an insulator were microscopically displaced under the influence of a time-varying electric field, a form of electric current would be created. This led him to conclude that the current in Ampère’s original circuitual law should be made up of not only the usual free current (represented by \(p,q,r \)) but also a displacement current represented by \(df/dt, dg/dt, dh/dt \). In doing so, he created a new equation that not only guaranteed the conservation of electric charge but, taken together with Faraday’s law of induction, gave rise to mutually supportive electric and magnetic fields, travelling at a finite speed in the form of waves. While several of these equations had appeared in an earlier article published by Maxwell in 1861-2, this was in connexion with an investigation of molecular vortices as a possible analogue for electromagnetic behaviour. In contrast, the equations in the ‘Dynamical Theory’ paper of 1865 expressed the behaviour of the electromagnetic field, a concept that originated with Faraday (1791-1867). These equations, and the subsequent developments discussed this article, therefore became the cornerstone of electrodynamics.
Based on some available experimental data that had nothing directly to do with the properties of light itself, Maxwell found that the speed of these waves was, within experimental error, equal to the known speed of light as determined by the French physicist Fizeau (1819-96). Thus, in 1865, Maxwell was able to affirm,

"...we have strong reason to conclude that light itself (including radiant heat and other radiation if any) is an electromagnetic disturbance in the form of waves..."

This was just as Faraday had predicted some nineteen years earlier. Given the subsequent discovery of a whole spectrum of electromagnetic waves with an enormous range of wavelengths (Figure 2), these were prescient words indeed.

In his 1873 book, A Treatise on Electricity and Magnetism, Maxwell went on to express certain of his equations in the notation of quaternions, perhaps in deference to his friend and colleague, Tait (1831-1901), who was both a physicist and an expert on the subject. His key equations now appeared as in Figure 1. Quaternions were discovered by the Irish mathematician Hamilton (1805-65); they have four components, one of which is a scalar while the other three form a vector. In quaternion language, $\mathbf{\nabla}$ represents the vector derivative $\partial_i + \partial_j + \partial_k$, while \mathbf{H} represents the vector $H_i \mathbf{i} + H_j \mathbf{j} + H_k \mathbf{k}$ (i.e., \mathbf{H} in the table above). The product of $\mathbf{\nabla}$ and \mathbf{H} is then written as $\mathbf{\nabla} \mathbf{H}$, and, by applying Hamilton's original rule $i^2 = j^2 = k^2 = ijk = -1$ and preserving the order of products, $\mathbf{\nabla} \mathbf{H}$ may be evaluated as

$$\mathbf{\nabla} \mathbf{H} = \left(\frac{\partial H_x}{\partial x} + \frac{\partial H_y}{\partial y} + \frac{\partial H_z}{\partial z} \right) \mathbf{i} + \left(\frac{\partial H_y}{\partial z} - \frac{\partial H_z}{\partial y} \right) \mathbf{j} + \left(\frac{\partial H_z}{\partial x} - \frac{\partial H_x}{\partial z} \right) \mathbf{k}$$

This equation was formally written as $\mathbf{\nabla} \mathbf{H} = S.\mathbf{\nabla} \mathbf{H} + V.\mathbf{\nabla} \mathbf{H}$, in which $S.\mathbf{\nabla} \mathbf{H}$ corresponds to $-\mathbf{\nabla} \cdot \mathbf{H}$ while $V.\mathbf{\nabla} \mathbf{H}$ corresponds to $\mathbf{\nabla} \times \mathbf{H}$. Today, however, most people would agree that Maxwell’s equations appear simpler when written in the vector notation due independently to Heaviside (1850-1925) and Gibbs (1839-1903). In Heaviside’s formalism $V.\mathbf{\nabla} \mathbf{H} = \mathbf{A} + \mathbf{D}$ became $\text{curl} \mathbf{H} = \mathbf{J} + \partial \mathbf{D}/\partial t$, whereas Gibbs introduced the more familiar notation $\mathbf{\nabla} \cdot$ and $\mathbf{\nabla} \times$ that sometime later led to $\mathbf{\nabla} \times \mathbf{H} = \mathbf{J} + \partial \mathbf{D}/\partial t$. Apart from such notational differences, their vector representations were identical.

In addition to introducing vector notation, Heaviside made other important changes to Maxwell’s quaternion equations. First, taking the equation labelled in the Treatise as (B), he removed the expression relating to the velocity of a moving conductor and, by taking the curl of the remaining equation, he eliminated the scalar potential. He was then able to replace the curl of \mathbf{A} (the vector potential) with \mathbf{B} (the magnetic induction) to obtain $\text{curl} \mathbf{E} = -\partial \mathbf{B}/\partial t$. It is interesting to note that the term curl was suggested first by Maxwell. Finally, Heaviside eliminated the vector potential from the equation that Maxwell labelled as equation (A) by taking its divergence, giving $\text{div} \mathbf{B} = 0$. Heaviside preferred divergence to Maxwell’s opposite idea of convergence.

Lorentz (1853-1938) then made a further contribution by bringing in the microscopic origin of electric charge. In doing so, he expressed the displacement \mathbf{D} as $\varepsilon_0 \mathbf{E} + \mathbf{P}$, where \mathbf{P} is the dielectric polarisation that is associated with the displacement of local charge, which is separate from the vacuum polarisation $\varepsilon_0 \mathbf{E}$ in which there is no local displacement of charge. Taken together, these changes gave Maxwell’s equations the foundation and form recognised by today’s scientists and engineers.

The equations on the plinth of the statue of Maxwell in Edinburgh (Figure 3) are,

$$\nabla \cdot \mathbf{D} = \rho \quad \nabla \cdot \mathbf{B} = 0 \quad \nabla \times \mathbf{E} = -\partial \mathbf{B}/\partial t \quad \nabla \times \mathbf{H} = \partial \mathbf{D}/\partial t + \mathbf{J}$$
In 1887, Hertz (1857-94) demonstrated electromagnetic signals being transmitted and received across his laboratory; they travelled at a finite speed, were reflected from surfaces and caused interference patterns, just like light waves. This vindicated experimentally Faraday’s and Maxwell’s unique insights and today the achievements of Faraday, Maxwell and Hertz stand amongst the greatest in physics. Unfortunately, Faraday and Maxwell did not live to share in the triumph that resulted from Hertz’s discovery. Hertz went on, in 1890, to publish a clarified version of Maxwell’s equations. Although these were mathematically equivalent to Heaviside’s version, Hertz did not adopt the new vector notation and simply wrote out his equations the long way.

Einstein’s admiration for Maxwell has been recorded in an earlier newsletter which quoted Einstein as saying “...I stood on the shoulders of Maxwell.” Indeed, one of the cornerstones of Einstein’s 1905 paper on special relativity is that measurements made by observers with different uniform velocities are related by a Lorentz transformation, and not by a simple Galilean one. While the Lorentz transformation may at first seem counter-intuitive, it guarantees the constancy (invariance) of the speed of light in free space, that is to say it always has the same value for any observer no matter what their relative speed. Not only do Maxwell’s equations lead to this same conclusion, they are fully compatible with Einstein’s special relativity just as they stand. This was one of the key observations that guided Einstein to his remarkable conclusions.

By using Minkowski’s 4-dimensional spacetime (three dimensions for space and one for time) and the formalism of tensors, Einstein later found that Maxwell’s equations in free space may expressed in a form that is consistent with general relativity

$$\frac{\partial F_{\rho \sigma}}{\partial x^\tau} + \frac{\partial F_{\tau \rho}}{\partial x^\sigma} + \frac{\partial F_{\tau \sigma}}{\partial x^\rho} = 0 \quad \frac{\partial F^{\rho \nu}}{\partial x^\nu} = J^\mu$$

The components of the 4×4 antisymmetric tensor F express the components of both the electric field and magnetic fields as seen by an arbitrary observer. However, while the components of x, F and J may change from one observer to another, they will always obey these same tensor equations. Such equations are said to be covariant, a hallmark of all of Nature’s fundamental physical equations.

With advances in mathematical notation have come increasingly succinct ways of writing Maxwell’s equations. This may involve the use of differential forms (pioneered by the French mathematician, Cartan 1869-1951), geometric algebra (revived by Hestenes, 1933-) or biquaternions (Graves 1806-1870 and Cayley 1821-1895). For example, in notation of biquaternions, Maxwell’s equations in free space become

$$\left(\nabla - \frac{i}{c} \frac{\partial}{\partial t} \right) (E + icB) = -\frac{\partial}{\partial t} E + icZ_J J$$

while in the notation of differential forms they are

$$dF = 0 \quad d \ast F = J$$

Finally, in the notation of geometric algebra, the equations take the even more concise form,

$$\nabla F = J$$

But, although mathematical techniques have developed and the notation has become more succinct, the underlying physical behaviour of electromagnetic fields is essentially just as Maxwell expressed it in his equations of 1865.
Advance notice of a new book about the contributions to physics of James Clerk Maxwell

James Clerk Maxwell Foundation, 14 India Street, Edinburgh, EH3 6EZ The birthplace in 1831 of James Clerk Maxwell.
Tel +44 (0) 131 343 1036 www.clerkmaxwellfoundation.org

Scottish Charity: SC 015003 © James Clerk Maxwell Foundation 2012