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Maxwell’s Equations: the Tip of an Iceberg1

by Professor Peter Higgs, CH, FRS, FRSE – University of Edinburgh (Physics Nobel Laureate, 2013)
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My title describes Maxwell’s equations as the tip of an iceberg and 
I am going to try to tell you something about that iceberg.

In 1865, Maxwell’s electromagnetic field equations were the first fully
fledged field theory of forces. The term field had been introduced
twenty years earlier by Faraday in a paper in which he referred to
magnetic fields. Maxwell did what Faraday was not well equipped to
do because of his lack of mathematics; he arrived at the fully fledged
theory of electromagnetism. Not only was Maxwell’s theory the 
first fully fledged field theory, it was actually (although Maxwell 
himself was not aware of this) the first relativistic field theory,
in the current sense of the term.

Maxwell’s thinking about space and time was very Newtonian –
absolute time and all that – so what he thought of as the relation 
between inertial frames of reference (the Galilean transformation)
led to the conclusion that his equations were valid only in the 
reference frame of what was called the luminiferous ether. It was 
Einstein, forty years later, who put that right by modifying Newton’s
equations (so as to be compatible with the Lorentz transformation)
but keeping Maxwell’s. That was one of the ways in which Maxwell
was a pioneer.

(The second relativistic field theory was formulated by Einstein 
– his 1915 theory of gravitation – which he arrived at with the 
knowledge of what Maxwell had done before him. I will not 
have anything to say about gravity.)

Quantum Mechanics
Around 1925, sixty years after Maxwell’s equations, quantum 
mechanics arrived. Soon Maxwell’s theory was placed in a quantum
mechanical framework by Dirac, who next formulated the relativistic
quantum theory of electrons. The combination of these, known as
quantum electrodynamics (QED) arrived around 1930.

After some years of difficulty in calculations of quantum effects – the
problem of infinities – around 1950 the theory finally became a fully
successful quantum field theory. In fact, it is still the most accurate
theory that we have in its experimental predictions. That is what 
followed, in the twentieth century, from Maxwell’s work.

I want to turn now to the subject of generalisations of Maxwell’s
equations and their relation to other forces which were not 
discovered until the twentieth century.

Noether’s Theorem
First, I want to highlight an important step in our understanding of
Maxwell’s equations which arose from the theorem proved in 1915 
by Emmy Noether. This was the theorem that proved the connection
between symmetries and conservation laws in dynamics.

At the time, the known applications of Noether’s Theorem were to
space-time symmetries (Euclidean symmetry), whereby translation
symmetry in space gives rise to conservation of linear momentum,
translation symmetry in time to energy conservation, and rotational
symmetry to conservation of angular momentum. But that list 
has omitted one well known conservation law; electric charge is 
conserved and this is built into Maxwell’s equations. What does 
this have to do with symmetry?

Schrödinger’s Equation
The answer to this question did not become clear until Schrödinger,
in 1926, wrote down his wave equation for a charged particle in an
electromagnetic field. It then became clear that a new kind of 
symmetry was involved, which had nothing to do with space and
time. A Schrödinger wave function is a complex number, so two 
real numbers are involved; and you can think of them as defining a 
point in a two-dimensional Argand diagram. It transpired that the 
conservation of charge is the consequence, by Noether’s theorem, 
of the symmetry of this wave function under rotations in the 
Argand plane. This is the germ of all the other symmetries which
were encountered later.

Classical forces not the whole story
In the twentieth century it began to be clear that the classical forces,
electromagnetism and gravity, were not the whole story. First, the
phenomena of radioactivity, in particular what is called beta-decay,
made it clear that there is what we now call a weak nuclear force 
of very short range – perhaps even a contact force – between the 
particles involved in this process.

What is more, when Rutherford and others started probing the
structure of the atomic nucleus, it became clear that there must 
also be a strong nuclear force to hold the constituents of the atomic 
nucleus together. In 1932, Chadwick’s discovery of the neutron
showed that the constituents were protons and neutrons, particles
which turned out to be rather similar – close in mass, with the same
spin, differing by one carrying electric charge and the other carrying
none: as far as the strong nuclear force was concerned they were
similar.

Heisenberg and Ivanenko (1932) introduced an enlargement of the
type of symmetry that underlies charge conservation, to a set of 
operations some of which mix the proton and the neutron wave
functions; this symmetry became known as isotopic spin symmetry.

The subsequent development of elementary particle physics involved
the discovery of still bigger approximate symmetries of this type.

1Adapted from his address to the Royal Society of Edinburgh on 9 November 2015 on the occasion of the 150th anniversary of the 1865 publication of Maxwell Equations.
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Theories of these new forces
When it came to theories of these new forces, the situation was not
very good.

There was a theory of the strong nuclear force which was not too bad
when the separation of the particles was large by nuclear standards
and which incorporated the isospin symmetry. This was the work 
of Kemmer (1936) based on earlier work of Yukawa (1935); when this
theory was pushed too far in order to understand the properties of
protons and neutrons better it did not work very well – agreement
with experiment was poor.

The situation with the weak nuclear force was even worse. It became
clear that there were similarities between the weak and electromagnetic
forces, which suggested that the weak nuclear force should be 
mediated by a field whose quanta 2 are particles of spin one like
photons, the quanta of electromagnetism. These particles would 
have to be very massive (unlike the photon which is massless) 
because in quantum theory the mass of the quantum goes inversely
as the range of the force.

But when theorists tried to handle the quantum field theory of a such
a force, they got nonsense. It was ‘not even wrong’; it was impossible
to calculate with it because quantum effects gave rise to infinities
which could not be renormalised away as had been done in QED. 
This was a disaster for the theory; many theorists gave up trying to 
use quantum field theory in elementary particle physics.

Maxwell’s Equations generalised
Meanwhile, Maxwell’s equations had been generalised so as to 
incorporate bigger symmetries; there had been a hint of this already,
in 1938, in some work of the Swedish physicist Oscar Klein. The first
full description of such a theory was given in 1954 by Yang and Mills:
it was also in the unpublished PhD thesis of Ronald Shaw.

For the isospin symmetry of the strong force, it required three copies
of a Maxwell field interacting with one another, which made it a
highly non-linear theory.

The big problem was that it appeared to have massless quanta, 
corresponding to long-range forces. And so for many years it was 
put on one side as a non-starter.

Spontaneous Breaking of Symmetry
However six years later, in 1960, a new concept, spontaneous breaking
of a symmetry, was imported into relativistic quantum field theory
from the physics of condensed matter by the Japanese-born theorist
Yoichiro Nambu. He had learned about the successful theory of 
superconductivity (Bardeen, Cooper and Schrieffer, 1957) from 
Schrieffer, and he saw that, when expressed in the language of 
(non-relativistic) quantum field theory, this theory had a ground 
state (the state of lowest energy) which was asymmetric with respect
to the symmetry which underlies electric charge conservation. 
Now in relativistic quantum field theory, the ground state is what we
know as the vacuum (absence of particles)3 and, if it is asymmetric
with respect to a symmetry, the states of higher energy (particles 
present) exhibit broken symmetry too. Nambu tried out this idea
on the symmetries of the strong nuclear force and obtained 
interesting results; he generated masses for the protons and 
neutrons from scratch – they were absent from the underlying 
field equations but appeared in the quantum states.

But there was a big snag; the theory also predicted quantum states
containing massless particles of spin zero. That was a disaster because
if such particles existed in our Universe, experimentalists would have
found them long ago – there is no threshold energy required for their
creation – and they would contribute substantially to energy loss from
stars, which we know is mostly due to electromagnetic radiation
(photons).

Goldstone’s Theorem
Nambu’s theory seemed to be dead in the water, especially after 
Jeffrey Goldstone of Cambridge (using an alternative formulation of
spontaneous symmetry breaking as a feature of classical field theories)
pointed out that the difficulty was intuitively obvious and should 
be a general consequence of spontaneous symmetry breaking in 
relativistic theories. By 1962, a theorem had been proved by Salam
and Weinberg (but known as the Goldstone Theorem because he
agreed to co-author the paper) which seemed to make it inescapable.

Loophole in the Goldstone Theorem
But, two years, later it was discovered that there was a loophole in 
the theorem; the axioms did not apply to Maxwellian field theories.
All that had to be done was to use Nambu or Goldstone symmetry 
breaking fields as sources of Maxwellian fields. Such a combination 
of theories gave just what was needed, theories in which some forces
were short range and others long range, the corresponding quanta
being massive and massless.

In 1967, Weinberg and also Salam, built on a Maxwellian theory by
Glashow (1961), who had proposed a certain unification of weak 
and electromagnetic interactions, by using the Goldstone version of 
spontaneous symmetry breaking to generate masses for the quanta
of the weak forces. 

In 1973, this theory received experimental confirmation. Much of 
the impetus for the crucial experiment came from the work of two
Dutch theorists, Veltman and ‘t Hooft, who by 1971 had proved that
Maxwellian quantum field theories, including those with spontaneous
symmetry breaking arising from a certain class of Goldstone sources
(such as the Weinberg-Salam theory) were as viable and calculable 
as quantum electrodynamics. 

Thus by the late twentieth century Maxwell’s equations had been 
enlarged to produce what we now call the electroweak theory which
contains four Maxwellian fields, one of which is electromagnetic.

Quantum Chromodynamics
By the mid nineteen seventies, more powerful methods for analysing
quantum field theories – again developed previously for condensed
matter physics – had shown that some Maxwellian theories had a
quite unexpected behaviour; the fields could confine particles of 
spin one-half in many-particle composite objects which could not
break up, the fields being confined too. In this way, a successful
Maxwellian theory of the strong nuclear force, known as quantum
chromodynamics (QCD) was developed. The confined particles are
three quarks making up a composite proton and neutron4: eight
Maxwellian fields (whose quanta are called gluons) are needed.

Conclusion
To conclude, we now know a total of twelve Maxwellian fields, 
four for the electroweak forces and eight for the strong forces. 
Quite an iceberg!

2 The concept of quantaof a field had been introduced by Einstein in 1905; it was what ultimately earned him his Nobel Prize in 1921.
3 The quantum vacuum is not as empty as physicists used to believe; it may contain uniform directionless fields!
4 By 1970 there was experimental evidence for this compositeness.
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Maxwell and Control Theory
By Professor Rodolphe Sepulchre, BSc, PhD (Louvain), Professor of Control Engineering 
at the University of Cambridge

“We have decided to call the entire field of control and communication theory, whether in the machine or in the 
animal, by the name Cybernetics, which we form from the Greek χυβερνήτης or steersman. In choosing this term,
we wish to recognize that the first significant paper on feed-back mechanisms is an article on governors, which
was published by Clerk Maxwell in 1868, and that governor is derived from a Latin corruption of χυβερνήτης.”
(Wiener Norbert, Cybernetics, or Controls and Communication in the Animal and the Machine - Cambridge, Mass.: M.I.T. Press, 1948)

Cybernetics
When the great American mathematician Norbert Wiener
(1894 – 1964) published the above masterpiece on control and 
communication theory, he had to invent a suitable name and a 
suitable heritage which would delineate the new field (which was 
relevant to the science of the machine and to the kingdom of 
the animal) and which would also revolutionize 20th century 
engineering. He chose the name cybernetics, from the Greek 
translation of governors.

Maxwell’s paper, ‘On Governors’, is perhaps one of the most 
unusual contributions by the father of electromagnetism. The paper
was written over a few weeks while Clerk Maxwell lived at his home
in Scotland, semi-retired from academic teaching. It is a mathematical
paper about an engineering topic. It concludes several years of study
of speed regulation mechanisms – quite a distraction from Maxwell’s
famous treaty on electromagnetism published in 1873.

Maxwell’s paper was not a model of scientific writing, had no practical
impact and illustrated technology that was soon to become obsolete.
Maxwell’s paper was virtually unknown until it received publicity
from Wiener. Yet, it contains the roots of control theory to 
become to-day an important branch of engineering with an ever
increasing range of applications. These range from aerospace and
manufacturing to artificial intelligence and bio-inspired robotics.

Cruise control in the 18th and 19th 
Centuries
A cruise control mechanism is a device that automatically regulates
the speed of a device.

The principle is the same as that for the feedback mechanism of a
thermostat; namely that an error signal is derived by comparing the
current speed (of the device) with the desired speed (thus deriving
the speed-error). A corrective torque is then applied to the device so 
as to minimise the speed-error.

Today’s cruise control systems are based on electronic sensors and 
a few lines of code. Although these resources were not available in
Maxwell’s day, speed regulation was already critical for the operation
of many devices. Governors were the cruise control systems of
Maxwell’s time.

In the 18th century, the feedback mechanism was the result of clever
mechanical links between the speed sensor and the motor. It had
been pioneered for steam engines by James Watt (1736–1819) who
connected a fly-ball speed sensor to the valve controlling the steam
inflow in the engine (Figure 1).

During the 19th century, the design of governors became a 
sophisticated engineering art to which many renowned physicists of
the time such as Airy, Foucault, Kelvin, and Gibbs all contributed.

Clerk Maxwell was exposed to governors from 1861, when the British
Association for the Advancement of Science asked him to be a 
member of a committee responsible for the establishment of electrical
standards, particularly of resistance (the ohm). The committee 
conceived an experiment to measure the resistance of a circular coil
of wire by spinning it rapidly about a vertical axis. The speed of the
coil had to be closely regulated for the method to give an accurate
measurement. For this purpose, the committee borrowed a governor
designed by one of its members, Fleeming Jenkin (1833 – 1885), the
Professor of Engineering at Edinburgh University.

The manuscripts of Maxwell (carefully scrutinised by the scholar A.T.
Fuller during his term in the control group at Cambridge University)
attest to the continuing interest of Maxwell in the intricacies of 
governors. This continuing interest took place over the seven years
separating Maxwell’s first encounter with the Jenkin’s governor and
the publication of his paper ‘On Governors’.

Maxwell was less interested in the mechanisms themselves than in
their underlying principles. This required formulating abstract 
questions as to their mathematical structure, the generality of which
would make them relevant beyond their particular rôle at the time.

It was Maxwell’s attempt to turn the art of designing governors into
the science of feedback that must have caused Wiener to designate
the illustrious physicist as the father of control theory.

Stability analysis
Maxwell placed the stability question at the core of his analysis of
governors by saying in his paper:

“There is a very general and very important problem in 
Dynamics... It is this: having found a particular solution...
to determine whether a slight disturbance would cause a small
periodic variation or a total derangement of the motion”.

Governors and feedback control

Figure 1: James Watt’s centrifugal speed controller (courtesy of Wikipedia).
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The feedback interconnection of two (otherwise stable) systems
might result in instability – a fundamental reason why feedback 
requires a mathematical theory.

Based on his earlier work on Saturn Rings, Maxwell attacked 
the stability question through the linearisation of the resulting 
equations of motion. 

By using linearisation, Maxwell reduced stability analysis to the 
algebraic problem of determining whether all the roots of a certain
polynomial have negative real part. This question is of central
importance in Maxwell’s paper and is repeatedly found in the
mathematical problems he designed for students while teaching 
at King’s College, London, in the early 1860’s. In this regard, his
1868 paper, ends with a question:

“I have not been able completely to determine these conditions for
equations of a higher degree than the third; but I hope that the 
subject will obtain the attention of mathematicians”.

E.J. Routh (1831 – 1907), the famous Cambridge mathematical tutor
and former classmate of Maxwell at Peterhouse College (where
Maxwell spent his first term before migrating to Trinity College) 
became interested in this question. In 1877, he provided a general 
solution for this stability problem for which he won the 1877 Adams
Prize, exactly 20 years after Maxwell had won the 1857 Adams Prize
for his memoir on Saturn rings (Maxwell was on the Smith’s Prize
Committee which set the topic for the 1877 Adams Prize).

It is unclear whether Maxwell’s paper ‘On Governors’ would have 
been known to Wiener without the interest of Routh in solving 
the open question raised by Maxwell. The solution (now called
the Routh-Hurwitz stability criterion) is still taught today in 
undergraduate control classes and stability analysis through
linearisation is still the first step of any modern control design.

Proportional and Integral Feedback Control
Further to his stability analysis, Clerk Maxwell devoted a large part 
of his 1868 paper to highlight a fundamental distinction between
moderators and governors.

In moderators, the correcting torque is proportional to the 
speed-error whereas, in governors, the correcting torque is 
proportional to the integral of the speed-error (integral-action 
or integal-control).

Using the above terminology, the fly-ball regulator (invented by
James Watt for his steam engine) is a moderator as it uses only a rigid
mechanical transmission from the fly-ball to the correcting valve.

In contrast, most of the designs of Maxwell’s time, including the 
design of Fleeming Jenkin, were governors as they included
integral-action in the design.

In his 1868 paper, Maxwell observed that governors needed an
independent moving piece to produce a response proportional 
to the integral of the speed-error, a reason for the increasing 
sophistication of the design.

In the Jenkin’s governor, this response was produced by an idler 
pulley. This pulley was connected through a worm gear to the 
brake-drum and to a counterweight suspended in a viscous fluid in 
a narrow upright cylinder (centrifugal pendulum) (Figures 2 and 3).

A connection between the two systems (fly-ball and brake-drum)
was established whenever the speed of the main system exceeded
the desired value. Then, the excessive centrifugal force pressed the
fly-ball against the brake-drum which moved. The integral response
mechanism was thus set in motion. The braking torque on the main
shaft would continue to increase until the centrifugal pendulum had
released the idler pulley, that is, until the speed-error had entirely
disappeared. The magnitude of the braking torque was proportional
to the time integral of the speed-error.

Maxwell’s paper explained why minimising the time integral of the
speed-error was necessary for achieving exact speed regulation
(i.e. a zero steady-state error). It clarified why the minimisation of the
time integral of the speed-error was not incompatible with stability,
an issue that appeared unclear at the time (and continues, even
today, to take many students by surprise!).

The ability of a feedback system to achieve exact regulation, in spite
of uncertainty, is a fundamental principle of modern control theory.
Integral control is the simplest manifestation of this principle. 
Millions of regulators deployed in today’s industrial world are in
operation just for their integral action, because it enables perfect
adaptation i.e. exact regulation in uncertain and changing 
environments. Integral action has also been identified in many 
biological regulatory feedback loops.

Maxwell’s heritage
For many, it comes as a surprise that Clerk Maxwell concerned
himself with an engineering-type question at the very time of 
producing his fundamental equations (Maxwell’s Equations) 
of electromagnetism. However, Wiener recognised that it must 
have taken one of the greatest of scientific minds to foresee 
the importance of feedback and to call for a mathematical 
science of feedback.

One hundred fifty years later, control theory is still a young 
discipline. Stability analysis, through linearisation and 
integral-control, are part of its fundamentals. Most importantly,
control engineers, neuroscientists and roboticists agree that 
feedback remains one of the most important concepts of 
contemporary science.

Figure 2: Principle of Fleeming Jenkin’s
flying ball governor, courtesy Transactions
of ASME: Journal of Dynamical Systems,
Measurement and Control, 1976.

Figure 3: Fleeming Jenkin’s governor, as 
used with Maxwell when determining the
measurement of the ohm (Courtesy Whipple
Science Museum, University of Cambridge).


